Objectives: In the clinical field, it is important to understand the factors that have effects on a certain disease or symptom. For this, many researchers apply Data Mining method to the clinical data that they have collected. One of the efficient methods for Data Mining is decision tree induction. Many researchers have studied to find the best split criteria of decision tree; however, various split criteria coexist.
Methods: In this paper, we applied several split criteria(Information Gain, Gini Index, Chi-Square) to Sasang constitutional clinical information and compared each decision tree in order to find optimal split criteria.
Results & Conclusion: We found BMI and body measurement factors are important factors to Sasang constitution by analyzing produced decision trees with different split measures. And the decision tree using information gain had the highest accuracy. However, the decision tree that produced highest accuracy is changed depending on given data. So, researcher have to try to find proper split criteria for given data by understanding attribute of the given data.
|